Acta Crystallographica Section E

# **Structure Reports**

### **Online**

ISSN 1600-5368

# Bis(2-formylphenolato)cobalt(II)

# Xiao-Yang Qiu

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

Correspondence e-mail: xiaoyang\_qiu@126.com

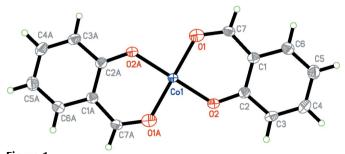
#### **Key indicators**

Single-crystal X-ray study  $T=298~\mathrm{K}$  Mean  $\sigma(\mathrm{C-C})=0.005~\mathrm{\mathring{A}}$  R factor = 0.051 wR factor = 0.153 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound,  $[Co(C_7H_5O_2)_2]$ , the Co atom is connected to four O atoms from two 2-formylphenolate ligands in a square-planar coordination. The molecule possesses a crystallographically imposed centre of symmetry.

Received 10 April 2006 Accepted 28 April 2006


#### Comment

The ability of some cobalt(II) complexes to bind dioxygen reversibly was discovered decades ago. Since then, many cobalt(II) dioxygen carriers have been discovered (Rybak-Akimova *et al.*, 1997), some of them having properties which make them good candidates for industrial and medicinal applications. Here, the structure of a new cobalt(II) complex, (I), derived from salicylaldehyde is reported.

In the title mononuclear cobalt(II) compound, the Co atom is four-coordinated by four O atoms from two 2-formylphenolate ligands, forming a square-planar coordination (Fig. 1). The Co atom lies on a centre of symmetry. The whole complex molecule is essentially planar, with a mean deviation of 0.047 (3) Å. The Co—O bond lengths (Table 1) are comparable with the corresponding values observed in other cobalt(II) complexes (De Angelis *et al.*, 1996; Ruiz-Molina *et al.*, 2000; Henson *et al.*, 1999). The molecular packing in (I) is stabilized only by van der Waals interactions (Fig. 2).

#### **Experimental**

A mixture of salicylaldehyde (1.0 mmol, 122.1 mg) and  $Co(CH_3-COO)_2\cdot 4H_2O$  (1.0 mmol, 249.1 mg) was dissolved in ethanol (50 ml).



The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Atoms with the suffix A are generated by the symmetry code (2 - x, 2 - y, 2 - z).

© 2006 International Union of Crystallography All rights reserved The mixture was stirred for about 1 h at room temperature to give a clear brown solution. After allowing the solution to evaporate slowly in air for a week, brown flake-like crystals were obtained.

#### Crystal data

| [Co(C7H5O2)2]               | Z = 2                                     |
|-----------------------------|-------------------------------------------|
| $M_r = 301.15$              | $D_x = 1.646 \text{ Mg m}^{-3}$           |
| Monoclinic, $P2_1/c$        | Mo $K\alpha$ radiation                    |
| a = 12.955 (2)  Å           | $\mu = 1.42 \text{ mm}^{-1}$              |
| b = 5.846 (1)  Å            | T = 298 (2)  K                            |
| c = 8.050 (2)  Å            | Flake, brown                              |
| $\beta = 94.72 (2)^{\circ}$ | $0.19 \times 0.17 \times 0.09 \text{ mm}$ |
| $V = 607.6 (2) \text{ Å}^3$ |                                           |

#### Data collection

Bruker SMART CCD area-detector diffractometer 4072 measured reflections 1312 independent reflections we scans 1084 reflections with  $I > 2\sigma(I)$  Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.774, T_{\max} = 0.883$   $\theta_{\max} = 27.0^{\circ}$ 

#### Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & & w = 1/[\sigma^2(F_{\rm o}^2) + (0.0811P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.051 & & + 0.9211P] \\ wR(F^2) = 0.153 & & where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ S = 1.07 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 1312 \ \mbox{reflections} & \Delta\rho_{\rm max} = 0.80 \ \mbox{e Å}^{-3} \\ 88 \ \mbox{parameters} & \Delta\rho_{\rm min} = -0.70 \ \mbox{e Å}^{-3} \\ \mbox{H-atom parameters constrained} \end{array}$ 

**Table 1** Selected geometric parameters (Å, °).

| Co1-O2          | 1.909 (3)  | Co1-O1                 | 1.921 (3)  |
|-----------------|------------|------------------------|------------|
| $O2^{i}-Co1-O2$ | 180        | O2-Co1-O1              | 92.73 (13) |
| $O2^{i}-Co1-O1$ | 87.27 (13) | O1-Co1-O1 <sup>i</sup> | 180        |

Symmetry code: (i) -x + 2, -y + 2, -z + 2.

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C-H distances of 0.93 Å and with  $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$ .

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

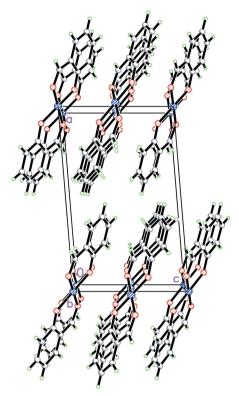



Figure 2 The molecular packing of (I), viewed along the b axis.

The author acknowledges Fuyang Normal College for research grants.

## References

Bruker (1998). SMART (Version 5.628), SAINT (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA. De Angelis, S., Solari, E., Gallo, E., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). Inorg. Chem. 35, 5995–6003.

Henson, N. J., Hay, P. J. & Redondo, A. (1999). *Inorg. Chem.* 38, 1618–1626.
Ruiz-Molina, D., Veciana, J., Wurst, K., Hendrickson, D. N. & Rovira, C. (2000). *Inorg. Chem.* 39, 617–619.

Rybak-Akimova, E. V., Otto, W., Deardorf, P., Roesner, R. & Busch, D. H. (1997). *Inorg. Chem.* **36**, 2746–2753.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.