## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## $\mathrm{Bis}\left(2\right.$-formylphenolato- $\kappa^{2} O, O^{\prime}$ )iron(II)

## Yu-Min Yang, Peng-Cheng Lu, Tao-Tao Zhu and Chang-Hong Liu*

Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, People's Republic of China, and, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: changhong_liu2223@yahoo.com.cn

Received 27 April 2007; accepted 2 May 2007

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; $R$ factor $=0.035 ; w R$ factor $=0.100 ;$ data-to-parameter ratio $=12.1$.

## Experimental

Crystal data
$\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=298.07$
Monoclinic, $P 2_{1} / n$
$a=8.801$ (5) A
$b=6.236$ (3) $\AA$
$c=11.408$ (6) $\AA$
$\beta=105.642$ (7) ${ }^{\circ}$

## Data collection

Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.668, T_{\text {max }}=0.854$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035 \quad 88$ parameters
$w R\left(F^{2}\right)=0.100$
$S=1.02$
1068 reflections
$V=602.9(5) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=1.26 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.35 \times 0.30 \times 0.13 \mathrm{~mm}$

3023 measured reflections 1068 independent reflections 841 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

The title complex, $\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\right]$, is a mononuclear iron(II) complex with a distorted square planar coordination geometry and has the central $\mathrm{Fe}^{2+}$ ion located on an inversion centre, with four O atoms from two 2-formylphenolate ligands.


Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1996); software used to prepare material for publication: SHELXTL.

The work was supported by the Analytical Test Fund of Nanjing University awarded to Dr Chang-Hong Liu.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2082).

## References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

## supplementary materials

Acta Cryst. (2007). E63, m1613 [ doi:10.1107/S1600536807021721]

## $\operatorname{Bis}\left(2\right.$-formylphenolato- $\left.\kappa^{\mathbf{2}} O, O^{\prime}\right)$ iron(II)

Y.-M. Yang, P.-C. Lu, T.-T. Zhu and C.-H. Liu

## Experimental

Equimolar iron(II) acetate and salicylaldehyde were put into a Teflon vessel, and aqueous ethanol solution $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}=1\right.$ : $1 v / v$ ) was added. The vessel was then put in a stainless steel tank to make hydrothermal treatment. The tank was heated to $140^{\circ} \mathrm{C}$ for 48 h . After the autoclave was cooled to room temperature, red crystals were formed. They were filtered, washed with aqueous ethanol solution for three times, and dried in a vacuo using $\mathrm{CaCl}_{2}$, yield $71 \%$.

## Refinement

C-bound H atoms were included in the riding model approximation with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

## Figures



Fig. 1. A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability label and H atoms are shown as small spheres of arbitrary radii. Unlabeled atoms are related to labeled atoms by the symmetry code $(-x+1,-y,-z+2)$.

## $\operatorname{Bis}\left(2\right.$-formylphenolato- ${ }^{2} \mathbf{O}, O^{\prime}$ )iron(II)

## Crystal data

$$
\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\right]
$$

$$
M_{r}=298.07
$$

Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2yn
$a=8.801$ (5) $\AA$
$b=6.236$ (3) $\AA$
$c=11.408(6) \AA$
$\beta=105.642(7)^{\circ}$
$V=602.9(5) \AA^{3}$
$Z=2$
$F_{000}=304$
$D_{\mathrm{x}}=1.642 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 658 reflections
$\theta=3.6-26.1^{\circ}$
$\mu=1.26 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, red
$0.35 \times 0.30 \times 0.13 \mathrm{~mm}$

## Data collection

Bruker SMART CCD
diffractometer

## supplementary materials

Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.668, T_{\text {max }}=0.854$
3023 measured reflections

## Refinement

## Refinement on $F^{2}$

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.100$
$S=1.02$
1068 reflections
88 parameters
Primary atom site location: structure-invariant direct methods

841 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-9 \rightarrow 10$
$k=-6 \rightarrow 7$
$l=-13 \rightarrow 7$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0643 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.009$
$\Delta \rho_{\max }=0.37$ e $\AA^{-3}$
$\Delta \rho_{\min }=-0.29 \mathrm{e} \AA^{-3}$
Extinction correction: none

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Fe | 0.5000 | 0.0000 | 1.0000 | $0.0375(2)$ |
| O1 | $0.3768(2)$ | $0.1172(3)$ | $0.8467(2)$ | $0.0613(6)$ |
| O2 | $0.6619(2)$ | $0.2057(3)$ | $1.01596(19)$ | $0.0577(6)$ |
| C1 | $0.4067(4)$ | $0.2879(5)$ | $0.7994(3)$ | $0.0566(8)$ |
| H1A | 0.3347 | 0.3292 | 0.7272 | $0.068^{*}$ |
| C2 | $0.5378(4)$ | $0.4246(5)$ | $0.8436(3)$ | $0.0480(7)$ |
| C3 | $0.6593(3)$ | $0.3772(5)$ | $0.9496(3)$ | $0.0478(7)$ |
| C4 | $0.7849(4)$ | $0.5252(5)$ | $0.9844(4)$ | $0.0629(10)$ |
| H4A | 0.8673 | 0.4982 | 1.0533 | $0.075^{*}$ |
| C5 | $0.7869(4)$ | $0.7082(5)$ | $0.9180(4)$ | $0.0694(10)$ |

## sup-2

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| H5A | 0.8708 | 0.8033 | 0.9433 | $0.083^{*}$ |
| C6 | $0.6667(4)$ | $0.7555(5)$ | $0.8137(4)$ | $0.0682(10)$ |
| H6A | 0.6696 | 0.8802 | 0.7696 | $0.082^{*}$ |
| C7 | $0.5447(4)$ | $0.6140(5)$ | $0.7779(3)$ | $0.0619(9)$ |
| H7A | 0.4639 | 0.6435 | 0.7084 | $0.074^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fe | $0.0355(3)$ | $0.0346(3)$ | $0.0344(4)$ | $-0.0034(2)$ | $-0.0043(2)$ | $0.0028(2)$ |
| O1 | $0.0597(13)$ | $0.0552(14)$ | $0.0568(14)$ | $-0.0066(11)$ | $-0.0052(11)$ | $0.0086(12)$ |
| O2 | $0.0571(13)$ | $0.0556(13)$ | $0.0498(13)$ | $-0.0091(10)$ | $-0.0039(10)$ | $0.0068(11)$ |
| C 1 | $0.0536(19)$ | $0.0568(19)$ | $0.052(2)$ | $0.0065(15)$ | $0.0010(15)$ | $0.0093(16)$ |
| C2 | $0.0500(18)$ | $0.0448(14)$ | $0.0499(19)$ | $0.0071(14)$ | $0.0146(14)$ | $0.0032(15)$ |
| C3 | $0.0527(19)$ | $0.0456(17)$ | $0.0448(17)$ | $0.0001(14)$ | $0.0125(14)$ | $-0.0028(15)$ |
| C4 | $0.065(2)$ | $0.063(2)$ | $0.056(2)$ | $-0.0143(16)$ | $0.0078(17)$ | $-0.0014(17)$ |
| C5 | $0.075(2)$ | $0.061(2)$ | $0.078(3)$ | $-0.0172(19)$ | $0.030(2)$ | $-0.005(2)$ |
| C6 | $0.076(2)$ | $0.0538(19)$ | $0.082(3)$ | $0.0027(18)$ | $0.034(2)$ | $0.0130(19)$ |
| C7 | $0.062(2)$ | $0.059(2)$ | $0.067(2)$ | $0.0129(18)$ | $0.0206(17)$ | $0.0132(19)$ |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| $\mathrm{Fe}-\mathrm{O} 2^{\mathrm{i}}$ | $1.889(2)$ |
| :--- | :--- |
| $\mathrm{Fe}-\mathrm{O} 2$ | $1.889(2)$ |
| $\mathrm{Fe}-\mathrm{O} 1^{\mathrm{i}}$ | $1.936(2)$ |
| $\mathrm{Fe}-\mathrm{O} 1$ | $1.936(2)$ |
| $\mathrm{O} 1-\mathrm{C} 1$ | $1.253(3)$ |
| $\mathrm{O} 2-\mathrm{C} 3$ | $1.307(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.413(4)$ |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 0.9300 |
| $\mathrm{C} 2-\mathrm{C} 7$ | $1.409(5)$ |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Fe}-\mathrm{O} 2$ | 180.0 |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Fe}-\mathrm{O} 1^{\mathrm{i}}$ | $93.15(9)$ |
| $\mathrm{O} 2-\mathrm{Fe}-\mathrm{O} 1^{\mathrm{i}}$ | $86.85(9)$ |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Fe}-\mathrm{O} 1$ | $86.85(9)$ |
| $\mathrm{O} 2-\mathrm{Fe}-\mathrm{O} 1$ | $93.15(9)$ |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe}-\mathrm{O} 1$ | $180.000(1)$ |
| $\mathrm{C} 1-\mathrm{O} 1-\mathrm{Fe}$ | $125.3(2)$ |
| $\mathrm{C} 3-\mathrm{O} 2-\mathrm{Fe}$ | $127.21(19)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | $127.2(3)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 116.4 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 116.4 |
| $\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$ | $120.0(3)$ |
| $\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$ | $117.7(3)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$ | $122.4(3)$ |
| $\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$ | $118.8(3)$ |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Fe}-\mathrm{O} 1-\mathrm{C} 1$ | $172.5(3)$ |


| $\mathrm{C} 2-\mathrm{C} 3$ | $1.413(4)$ |
| :--- | :--- |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.412(4)$ |
| $\mathrm{C} 4-\mathrm{C} 5$ | $1.373(4)$ |
| $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9300 |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.394(5)$ |
| $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | 0.9300 |
| $\mathrm{C} 6-\mathrm{C} 7$ | $1.365(5)$ |
| $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 0.9300 |
| $\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$ | 0.9300 |
| $\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$ | $123.9(3)$ |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | $117.3(3)$ |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $120.9(3)$ |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 119.5 |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 119.5 |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $121.8(3)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | 119.1 |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | 119.1 |
| $\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$ | $118.3(3)$ |
| $\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 120.9 |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 120.9 |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$ | $121.8(3)$ |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$ | 119.1 |
| $\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$ | 119.1 |
| $\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$ |  |

## supplementary materials

| $\mathrm{O} 2-\mathrm{Fe}-\mathrm{O} 1-\mathrm{C} 1$ | $-7.5(3)$ |
| :--- | :--- |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe}-\mathrm{O} 1-\mathrm{C} 1$ | $33(100)$ |
| $\mathrm{O} 2^{\mathrm{i}}-\mathrm{Fe}-\mathrm{O} 2-\mathrm{C} 3$ | $0(100)$ |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe}-\mathrm{O} 2-\mathrm{C} 3$ | $-170.2(2)$ |
| $\mathrm{O} 1-\mathrm{Fe}-\mathrm{O} 2-\mathrm{C} 3$ | $9.8(2)$ |
| $\mathrm{Fe}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | $3.0(5)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$ | $-177.5(3)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $2.5(5)$ |
| $\mathrm{Fe}-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$ | $172.7(2)$ |
| $\mathrm{Fe}-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$ | $-7.6(4)$ |


| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$ | $-0.1(5)$ |
| :--- | :--- |
| $\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $-0.5(5)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $179.6(3)$ |
| $\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $-179.7(3)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $0.7(5)$ |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $-0.4(5)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $0.0(6)$ |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$ | $0.2(5)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$ | $0.1(5)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$ | $-180.0(3)$ |

Symmetry codes: (i) $-x+1,-y,-z+2$.

Fig. 1


